MATH 504 HOMEWORK 6

Due Monday, October 29.

A poset \mathbb{P} is *separative* if whenever $p \not\leq q$, there is $r \leq p$ such that $r \perp q$.

Problem 1. Let M be a model of ZFC and $\mathbb{P} \in M$ be a separative poset. Let $p, q \in \mathbb{P}$ and let \dot{G} be the canonical \mathbb{P} -name for the generic filter. (I.e. $\dot{G} = \{\langle \check{r}, r \rangle \mid r \in \mathbb{P}\}.$) Show that $p \leq q$ iff $p \Vdash q \in \dot{G}$. Which direction uses separativity?

Problem 2. Let \mathbb{P}, \mathbb{Q} be two posets and $\pi : \mathbb{P} \to \mathbb{Q}$ be a map such that:

- (1) for $p, q \in \mathbb{P}$, if $p \leq q \rightarrow \pi(p) \leq \pi(q)$,
- (2) for $p \in \mathbb{P}$ and $r \in \mathbb{Q}$, if $r \leq \pi(p)$, then there is some $q \leq p$ such that $\pi(q) \leq r$

Show that if G is \mathbb{P} -generic over a model M, then the upward closure of π "G i.e. $H := \{r \in \mathbb{Q} \mid \exists p \in G(\pi(p) \leq r)\}$ is a \mathbb{Q} -generic filter over M. Then show that $M[H] \subset M[G]$.

Such a π as in the above problem is called a *projection*.

Problem 3. For a cardinal κ , let $Add(\omega, \kappa)$ be the poset of all partial functions $f : \kappa \times \omega \to \{0,1\}$ such that dom(f) is finite, ordered by reverse inclusion. Show that there is a projection from $Add(\omega, \kappa)$ to $Add(\omega, 1)$.

Problem 4. (1) Show that $Add(\omega, 1)$ is separative. (2) Show that $Add(\omega, \kappa)$ is separative.

Problem 5. Let M be a model of ZFC and let G be $Add(\omega, \kappa)$ -generic over M. In M[G], define $f^* = \bigcup_{f \in G} f$. Show that f^* is a function with domain $\kappa \times \omega$; i.e. $f^* : \kappa \times \omega \to \{0, 1\}$ is a total function.